2020, 37(12):1224-1229.doi:10.13213/j.cnki.jeom.2020.20490
环境应答基因孕烷受体(pregnane X receptor,NR1I2,PXR/SXR)属于核受体家族,富含于肝脏以及肠道。由于PXR的转录启动子区域存在高度的甲基化,这使得PXR在其他的组织器官部位表达很低[1]。PXR是目前肝脏代谢中最为重要的核受体之一,在内外源物质代谢稳态及毒理学中发挥关键作用[2-3]。外源化合物可以作为配体结合在PXR上,然后与RXR形成异源二聚体,转位入细胞核,调控下游基因的表达。若下游基因的启动子区域含有正向或反向的AGGTCA(N)重复序列,都有可能成为PXR调控的下游基因,比如细胞色素P450代谢酶CYP3A4和CYP2B6[4-5]。人们日常摄入的超过50%的药物都是通过PXR调控CYP3A4代谢解毒的[6]。众多环境毒物也能通过PXR-CYP3A4进行代谢解毒。已有报道表明黄曲霉毒素可以激活PXR并诱导CYP3A4 mRNA水平升高[7],三氯乙烯也能诱导PXR的下游基因CYP3A4 mRNA表达变化,介导职业危害[8]。在马兜铃酸引起肾损伤的研究中,发现甘氨酸-N-甲基转移酶能够影响PXR在CYP3A4基因启动子区域的结合和表达[9]。由此可见,PXR广泛参与外源有毒物质的代谢和解毒,有必要进行深入研究。
本文将基于PXR的蛋白质结构,综述其可能参与的蛋白质翻译后修饰,有助于开展PXR在细胞应激反应领域新功能的探索,对于进一步阐明环境应答基因参与调控的生命学事件将具有重要意义。
PXR蛋白质全长434个氨基酸,主要含有DNA结合结构域、铰链区以及配体结合结构域。外来化合物通常作为配体结合在配体结合结构域,然后此区域以及C-端的激活功能2(activation function 2,AF-2)结构域发生构象变化,并与视黄醛X受体(retinoid X receptor,RXR)形成二聚体,有利于PXR同其他蛋白质之间发生相互作用[10]。近年来的研究发现,PXR可以和一些共有因子(cofactors)相互作用,受到翻译后修饰(如磷酸化、乙酰化、泛素化等),有利于其在细胞质中与RXR相结合,从细胞质转位入细胞核的过程[11]。事实上,PXR的功能也远远不限于作为转录因子对下游基因进行转录水平的调控。
由于PXR的蛋白质结构上具有配体结合结构域,这使它具有了“感受器”的特征。PXR有广泛的配体结合谱,受体激动剂包括常用于结核病治疗的利福平、制霉菌素、胆汁、地塞米松等。同时,它又能调控下游靶基因的激活,具有“效应器”特征。一旦这些配体与受体结合,抑制子复合物[核受体抑制子(nuclear receptor corepressor,NcoR)/组蛋白去乙酰转移酶(histone deacetyltransferase,HDAC)/维甲酸-甲状腺受体沉默因子(silencing mediator of retinoic acid and thyroid hormone receptor,SMRT)]就会从PXR上解离出来,使得PXR转位至细胞核内与RXR结合成二聚体,从而继续激活下游基因,如CYP24A4,应对Vitamin D3的激活[12]。
迄今为止报道的受PXR调控的I相代谢酶有CYP2B6、CYP2C9、CYP2C19、CYP3A4和CYP3A5,PXR在CYP2B6和CYP3A4基因的启动子区域与DR4、DR3或ER6模序(motif)有非常强烈的结合;受PXR调控的Ⅱ相结合酶包括尿苷二磷酸葡萄糖醛酸转移酶(UDP-glucuronsytransferase,UGT1A1)、谷胱甘肽S-转移酶(glutathione S-transferase,GST)等,参与外源化学物质的解毒。此外,PXR还调控一些药物转运蛋白,包括多药耐药蛋白1(multidrug resistance protein 1,MDR1/P-gp/ABCB1)、多药耐药蛋白2(multidrug resistance protein 2,MRP2/ABCC2)等,参与耐药机制形成[14]。
在炎症通路方面,有报道表明PXR激活后抑制T淋巴细胞的增殖,降低CD25和干扰素γ的表达,并且降低核因子κB(nuclear factor-κ-gene binding,NF-κB)和丝裂原活化蛋白激酶1/2的磷酸化[15]。PXR激活后也通过抑制NF-κB信号通路,抑制其下游基因环氧化酶-2、肿瘤坏死因子α、细胞黏附分子1,以及一些白细胞介素的表达[16, 21]。
在对结肠癌、乳腺癌和宫颈癌的研究中表明,PXR能够诱导细胞分裂在G2/M期停滞,促进癌细胞凋亡并抑制癌细胞增生[17-19]。此外,PXR也能减少苯并(a)芘诱导的基因毒性[20, 22]。但是也有研究认为PXR激活能够介导药物诱导的肝脏损伤和肿瘤细胞增生[23-24]。因此,PXR是一个严格需要特定环境依赖性(Context-dependent)来发挥作用的受体,它的作用也会受信号通路间的串话所影响[25],有必要进行深入细致的研究。
人们通常认为只有配体结合PXR后才能导致它激活或者抑制,已有文章详述[11],但有研究表明,PXR甚至不需要配体的结合就可以发挥作用,对生命活动产生影响。禁食即能激活PXR[26]。利用GST-pulldown实验以及酵母双杂交系统,发现PXR能够直接与芳烃受体相结合[22]。而在研究PXR与组蛋白乙酰化转移酶Tip60的相互作用时,发现没有配体也同样能形成PXR-Tip60复合体[27]。SMRT更倾向于与未被配体活化的PXR相结合,PXR特异的激动剂利福平反而会打断两者之间的结合[28]。PXR通过两种方式调控鞘磷脂磷酸二酯酶酸性样蛋白3A(sphingomyelin phosphodiesterase acid-like 3A,SMPDL3A)基因的表达,介导磷酸酯质的代谢。在配体激活的情况下,人肝癌细胞HepG2和原代肝细胞中PXR能够结合在该基因的增强子区域诱导其表达,但是在没有配体的情况下,PXR仍然可以持续结合在其增强子区域抑制该基因的本底表达,阻碍另一个核受体肝X受体对SMPDL3A的激活[29]。的确,配体的结合并不能单独解释PXR的激活,而是PXR的翻译后修饰最终决定了下游基因的结局。例如,胰岛素激活磷脂酰肌醇-3-羟激酶(phosphatidylinositol-3-kinase,PI3K)/蛋白激酶B(protein kinase B,AKT)通路,磷酸化PXR,从而抑制了下游基因CYP3A的表达[30]。
因此,深入研究PXR的作用方式,探讨它的配体依赖方式以及非配体依赖方式,对于解码PXR的调控机制具有重要的作用。因为非配体依赖方式激活的PXR,可能会有完全不同于配体激活的蛋白质结合谱及调控机制。
PXR与蛋白质相互作用的关系日益受到重视,而且这种作用是不依赖于其作为转录因子的性质的。迄今为止,已经有很多研究探讨PXR与其他蛋白质之间相互作用来调控脂质代谢、DNA损伤、肝脏增大以及肝脏再生等,比如SMRT、固醇调节元件结合蛋白(sterol regulatory element-binding proteins,SREBPs)、多环芳香烃受体、Yes相关蛋白(yes-associated protein,YAP)等[11, 22, 31]。深入研究PXR的相互作用蛋白质网络,将对探讨疾病机制具有深远意义。以下将着重综述表观遗传信号通路中一些重要的酶蛋白与PXR的相互作用,这种相互作用很可能在疾病机制中具有更广泛的意义。
PXR与蛋白质精氨酸甲基化转移酶1(protein arginine methyltransferase 1,PRMT1)相互作用,介导PRMT1的细胞定位,使得PRMT1从细胞膜转位至细胞核[32]。此外,PRMT1对于PXR发挥对下游基因的转录调控是非常重要的[32]。PRMT1是否也对PXR本身的甲基化状态进行调控尚待进一步研究。
在PXR激活过程中,其乙酰化状态是非常关键的[33]。蛋白质结构上的丝氨酸350位点能够改变PXR的乙酰化状态及其与RXR形成异二聚体的能力[34],而赖氨酸109位点是PXR上主要的乙酰化位点,主要受sirtuin 1(SIRT1)和E1A结合蛋白(P300)调控,此位点被乙酰化后会抑制其转录活性以及与RXR形成二聚体的能力[35]。实质上,PXR上的一些共激活因子类固醇受体辅激活因子家庭(steroid receptor coactivator,SRC-1,SRC-2,SRC-3)等也可能是通过招募内源性的组蛋白乙酰化转移酶,从而使染色体构相变得松散来激活PXR的转录活性[36]。最近的一项研究表明,PXR能够与Tat相互作用蛋白(Tat interaction protein,Tip60)相结合形成复合体,并增强Tip60的乙酰化转移酶活性,调控肿瘤细胞的增生和迁移[27],这为也PXR能够被乙酰化修饰提供了直接的证据[33, 37]。去乙酰转移酶HDAC1作为PXR的抑制子通常与NCoR和SMRT形成复合物,使PXR的功能趋于沉默,在合适的配体激活下就会从PXR上解离出来,继续激活下游基因[38-39]。SIRT1属于HDAC Ⅲ,负责体内大多数蛋白的去乙酰化修饰。研究表明,PXR能够与SIRT1结合并发生相互作用,PXR的去乙酰化状态决定了其在脂肪生成中的作用[33, 40]。去乙酰化抑制剂曲古菌素A增加PXR的乙酰化水平,而HDAC3-SMRT共抑制复合物结合在PXR上调控配体依赖的PXR乙酰化[41]。
PXR与泛素连接酶之间的相互作用可能影响生命活动中非常重要的蛋白质的稳定性,从而改变机体接触外源化合物的结局,对生命活动的调控有着重要意义。虽然核受体家族成员与E3泛素连接酶相互作用的研究已经有很多报道,例如,雷公藤诱导的孤儿核受体NR4A1(nuclear receptor 4A1,又称,Nur77)与泛素连接酶TRAF2之间的相互作用增强了线粒体的降解和自噬;孤儿受体小异源二聚体伴侣受体(small heterodimer partner,SHP)通过与泛素连接酶Cullin3- speckle型POZ蛋白(speckle-type POZ protein,SPOP)之间的相互作用抑制X盒结合蛋白1的降解,来调控内质网应激[42-44],但是迄今为止,PXR与泛素连接酶相互作用的报道并不多。有研究表明,泛素连接酶RBCK1(Ring-B-box-coiled-coil protein interacting with protein kinase C-1)和UBR5(ubiquitin protein ligase E3 component n-recognin 5)与PXR相互作用,负责PXR的泛素化降解,调控外源化合物的代谢解毒[45-46]。PXR的泛素化修饰可能影响炎症通路及药物的代谢分布等等[47]。另一项研究表明,PXR和泛素连接酶热休克蛋白70碳末端相互作用蛋白(carboxy terminus of Hsc70 interacting protein,CHIP)无论是在胞浆还是胞核内均有结合,PXR上的T408位点磷酸化后招募CHIP,调控细胞自噬[48]。
据报道,PXR的蛋白质结构上含有类泛素酶SUMO(small ubiquitin-related modifier)相互作用的模序,SUMO-E3类泛素连接酶信号转导与转录激活子1的抑制蛋白(protein inhibitor of activated signal transducer and activator of transcription-1,PIAS1)和信号转导与转录激活子Y的抑制蛋白(protein inhibitor of activated signal transducer and activator of transcription-Y,PIASy)泛素化修饰PXR导致了PXR的转录抑制。同时,PXR的类泛素化抑制了其自身的泛素化降解[49]。这种泛素化和类泛素化的相互干扰可能直接影响PXR对外界的应激反应。研究指出,PXR上的K170位点是主要的泛素化位点,K108和K128位点发生的SUMO2/3会影响K170位点的泛素化修饰,从而影响其降解以及PXR介导的炎症抑制[49]。同时,PXR的乙酰化也会引发PXR的类泛素化修饰,介导PXR的转录抑制[41]。
由于PXR的蛋白质结构富含丝氨酸、苏氨酸等极易被磷酸化修饰的位点,因此其功能也主要被磷酸化修饰所调控[50]。迄今为止,有关PXR蛋白的磷酸化位点报道的非常多,寻找上游与PXR相互作用的磷酸激酶仍是研究热点[30, 51]。研究表明PXR与蛋白磷酸酶1结合,T290是主要的磷酸化位点,影响PXR在细胞中的定位以及下游CYP3A4、UGT1A1的表达[52]。PXR激活后招募蛋白磷酸酶2Cα并相互作用,调控血清糖皮质激素调节激酶2的去磷酸化,继而激活磷酸烯醇式丙酮酸羧激酶1(phosphoenolpyruvate carboxykinase 1,PEPCK1)和葡萄糖-6-磷酸酶(glucose-6-phosphatase,G6Pase)两个基因的表达,诱导肝脏的葡萄糖异生作用[53]。而PXR与蛋白激酶C的相互作用导致T408位点的磷酸化,继而募集泛素化连接酶调控细胞的自噬降解[48]。最近的一篇报道表明,在禁食情况下,PXR被激活,与牛痘相关激酶1的相互作用导致S350位点的磷酸化,抑制肝脏雌激素磺基转移酶1,参与葡萄糖代谢[54]。
迄今为止,PXR的相关研究多集中在对CYP3A4代谢酶的调控所参与的解毒研究上,但是正如前文所述,PXR的相互作用蛋白质网络是巨大的,PXR极有可能作为环境应答基因通过与蛋白质的相互作用在细胞应激领域发挥关键作用。因此深入研究PXR的相互作用蛋白质网络,关注PXR参与的蛋白质翻译后修饰,将对深入理解细胞对外界环境的应激机制具有深远意义。
[1] |
HABANO W, GAMO T, TERASHIMA J, et al. Involvement of promoter methylation in the regulation of Pregnane X receptor in colon cancer cells[J]. BMC Cancer, 2011, 11(1):81. DOI: 10.1186/1471-2407-11-81 |
[2] |
ZHAO L, ZHOU S, GUSTAFSSON J Å. Nuclear receptors:recent drug discovery for cancer therapies[J]. Endocr Rev, 2019, 40(5):1207-1249. |
[3] |
YAN J, XIE W. A brief history of the discovery of PXR and CAR as xenobiotic receptors[J]. Acta Pharm Sin B, 2016, 6(5):450-452. DOI: 10.1016/j.apsb.2016.06.011 |
[4] |
UMESONO K, MURAKAMI K K, THOMPSON C C, et al. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors[J]. Cell, 1991, 65(7):1255-1266. DOI: 10.1016/0092-8674(91)90020-Y |
[5] |
CASABAR R C, DAS P C, DEKREY G K, et al. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor[J]. Toxicol Appl Pharmacol, 2010, 245(3):335-343. |
[6] |
GU X, KE S, LIU D, et al. Role of NF-κB in regulation of PXR-mediated gene expression:a mechanism for the suppression of cytochrome P-4503A4 by proinflammatory agents[J]. J Biol Chem, 2006, 281(26):17882-17889. DOI: 10.1074/jbc.M601302200 |
[7] |
RATAJEWSKI M, WALCZAK-DRZEWIECKA A, SAŁKOWSKA A, et al. Aflatoxins upregulate CYP3A4 mRNA expression in a process that involves the PXR transcription factor[J]. Toxicol Lett, 2011, 205(2):146-153. DOI: 10.1016/j.toxlet.2011.05.1034 |
[8] |
XU X, KE Y, YUAN J, et al. Trichloroethylene-induced hypersensitivity dermatitis was associated with hepatic metabolic enzyme genes and immune-related genes[J]. Toxicol Res, 2016, 5(2):633-640. DOI: 10.1039/C5TX00400D |
[9] |
CHANG MM, LIN CN, FANG CC, et al. Glycine N-methyltransferase inhibits aristolochic acid nephropathy by increasing CYP3A44 and decreasing NQO1 expression in female mouse hepatocytes[J]. Sci Rep, 2018, 8(1):6960. |
[10] |
BOURGUET W, GERMAIN P, GRONEMEYER H. Nuclear receptor ligand-binding domains:three-dimensional structures, molecular interactions and pharmacological implications[J]. Trends Pharmacol Sci, 2000, 21(10):381-388. DOI: 10.1016/S0165-6147(00)01548-0 |
[11] |
OLADIMEJI P, CUI H, ZHANG C, et al. Regulation of PXR and CAR by protein-protein interaction and signaling crosstalk[J]. Expert Opin Drug Metab Toxicol, 2016, 12(9):997-1010. DOI: 10.1080/17425255.2016.1201069 |
[12] |
KONNO Y, KODAMA S, MOORE R, et al. Nuclear xenobiotic receptor pregnane X receptor locks corepressor silencing mediator for retinoid and thyroid hormone receptors (SMRT) onto the CYP24A1 promoter to attenuate vitamin D3 activation[J]. Mol Pharmacol, 2009, 75(2):265-271. |
[13] |
MA X, CHEN J, TIAN Y. Pregnane X receptor as the "sensor and effector" in regulating epigenome[J]. J Cell Physiol, 2015, 230(4):752-757. |
[14] |
WANG Y M, ONG S S, CHAI S C, et al. Role of CAR and PXR in xenobiotic sensing and metabolism[J]. Expert Opin Drug Metab Toxicol, 2012, 8(7):803-817. |
[15] |
SCHMUTH M, MOOSBRUGGER-MARTINZ V, BLUNDER S, et al. Role of PPAR, LXR, and PXR in epidermal homeostasis and inflammation[J]. Biochim Biophys Acta, 2014, 1841(3):463-473. |
[16] |
WAHLI W. A gut feeling of the PXR, PPAR and NF-κB connection[J]. J Intern Med, 2008, 263(6):613-619. |
[17] |
NIU Y, WANG Z, HUANG H, et al. Activated pregnane X receptor inhibits cervical cancer cell proliferation and tumorigenicity by inducing G2/M cell-cycle arrest[J]. Cancer Lett, 2014, 347(1):88-97. |
[18] |
OUYANG N, KE S, EAGLETON N, et al. Pregnane X receptor suppresses proliferation and tumourigenicity of colon cancer cells[J]. Br J Cancer, 2010, 102(12):1753-1761. |
[19] |
VERMA S, TABB M M, BLUMBERG B. Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells[J]. BMC Cancer, 2009, 9(1):3. DOI: 10.1186/1471-2407-9-3 |
[20] |
POON P Y, KWOK H H, YUE P Y, et al. Cytoprotective effect of 20(S)-Rg3 on benzo[a] pyrene-induced DNA damage[J]. Drug Metab Dispos, 2012, 40(1):120-129. |
[21] |
XIE W, TIAN Y. Xenobiotic receptor meets NF-κB, a collision in the small bowel[J]. Cell Metab, 2006, 4(3):177-178. |
[22] |
CUI H, GU X, CHEN J, et al. Pregnane X receptor regulates the AhR/Cyp1A1 pathway and protects liver cells from benzo-[a]-pyrene-induced DNA damage[J]. Toxicol Lett, 2017, 275:67-76. |
[23] |
WANG Y M, CHAI S C, BREWER C T, et al. Pregnane X receptor and drug-induced liver injury[J]. Expert Opin Drug Metab Toxicol, 2014, 10(11):1521-1532. |
[24] |
SHIZU R, ABE T, BENOKI S, et al. PXR stimulates growth factor-mediated hepatocyte proliferation by cross-talk with the FOXO transcription factor[J]. Biochem J, 2016, 473(3):257-266. |
[25] |
PONDUGULA S R, PAVEK P, MANI S. Pregnane X receptor and cancer:context-specificity is key[J]. Nucl Receptor Res, 2016, 3:101198. |
[26] |
VAN DEN BOSCH H M, BÜNGER M, DE GROOT P J, et al. Gene expression of transporters and phase Ⅰ/Ⅱ metabolic enzymes in murine small intestine during fasting[J]. BMC Genomics, 2007, 8(1):267. |
[27] |
BAKSHI K, RANJITHA B, DUBEY S, et al. Novel complex of HAT protein TIP60 and nuclear receptor PXR promotes cell migration and adhesion[J]. Sci Rep, 2017, 7(1):3635. |
[28] |
JOHNSON D R, LI C W, CHEN L Y, et al. Regulation and binding of pregnane X receptor by nuclear receptor corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT)[J]. Mol Pharmacol, 2006, 69(1):99-108. |
[29] |
JESKE J, BIT TER A, THASLER W E, et al. Liganddependent and-independent regulation of human hepatic sphingomyelin phosphodiesterase acid-like 3A expression by pregnane X receptor and crosstalk with liver X receptor[J]. Biochem Pharmacol, 2017, 136:122-135. |
[30] |
PONDUGULA S R, DONG H, CHEN T. Phosphorylation and protein-protein interactions in PXR-mediated CYP3A repression[J]. Expert Opin Drug Metab Toxicol, 2009, 5(8):861-873. |
[31] |
JIANG Y, FENG D, MA X, et al. Pregnane X receptor regulates liver size and liver cell fate by yes-associated protein activation in mice[J]. Hepatology, 2019, 69(1):343-358. |
[32] |
XIE Y, KE S, OUYANG N, et al. Epigenetic regulation of transcriptional activity of pregnane X receptor by protein arginine methyltransferase[J]. J Biol Chem, 2009, 284(14):9199-9205. |
[33] |
BISWAS A, PASQUEL D, TYAGI R K, et al. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation[J]. Biochem Biophys Res Commun, 2011, 406(3):371-376. |
[34] |
SUGATANI J, UCHIDA T, KUROSAWA M, et al. Regulation of pregnane X receptor (PXR) function and UGT1A1 gene expression by posttranslational modification of PXR protein[J]. Drug Metab Dispos, 2012, 40(10):2031-2040. |
[35] |
PASQUEL D, DORICAKOVA A, LI H, et al. Acetylation of lysine 109 modulates pregnane X receptor DNA binding and transcriptional activity[J]. Biochim Biophys Acta, 2016, 1859(9):1155-1169. |
[36] |
ROSENFELD M G, LUNYAK V V, GLASS C K. Sensors and signals:a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response[J]. Genes Dev, 2006, 20(11):1405-1428. |
[37] |
STAUDINGER J L, XU C, BISWAS A, et al. Post-translational modification of pregnane x receptor[J]. Pharmacol Res, 2011, 64(1):4-10. |
[38] |
NAGY L, KAO H Y, CHAKRAVARTI D, et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase[J]. Cell, 1997, 89(3):373-380. |
[39] |
LI H, LEO C, SCHROEN D J, et al. Characterization of receptor interaction and transcriptional repression by the corepressor SMRT[J]. Mol Endocrinol, 1997, 11(13):2025-2037. |
[40] |
BULER M, AATSINKI S M, SKOUMAL R, et al. Energy sensing factors PGC-1α and SIRT1 modulate PXR expression and function[J]. Biochem Pharmacol, 2011, 82(12):2008-2015. |
[41] |
CUI W, SUN M, ZHANG S, et al. A SUMO-acetyl switch in PXR biology[J]. Biochim Biophys Acta, 2016, 1859(9):1170-1182. |
[42] |
HELZER K T, HOOPER C, MIYAMOTO S, et al. Ubiquitylation of nuclear receptors:new linkages and therapeutic implications[J]. J Mol Endocrinol, 2015, 54(3):R151-R167. |
[43] |
SUN S, KELEKAR S, KLIEWER S A, et al. The orphan nuclear receptor SHP regulates ER stress response by inhibiting XBP1s degradation[J]. Genes Dev, 2019, 33(15/16):1083-1094. |
[44] |
HU M, LUO Q, ALITONGBIEKE G, et al. Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy[J]. Mol Cell, 2017, 66(1):141-153.e6. |
[45] |
RANA R, COULTER S, KINYAMU H, et al. RBCK1, an E3 ubiquitin ligase, interacts with and ubiquinates the human pregnane X receptor[J]. Drug Metab Dispos, 2013, 41(2):398-405. |
[46] |
ONG S S, GOKTUG A N, ELIAS A, et al. Stability of the human pregnane X receptor is regulated by E3 ligase UBR5 and serine/threonine kinase DYRK2[J]. Biochem J, 2014, 459(1):193-203. |
[47] |
El HOKAYEM J, AMADEI C, OBEID J P, et al. Ubiquitination of nuclear receptors[J]. Clin Sci (Lond), 2017, 131(10):917-934. |
[48] |
SUGATANI J, NOGUCHI Y, HATTORI Y, et al. Threonine-408 regulates the stability of human Pregnane X receptor through its phosphorylation and the CHIP/chaperoneautophagy pathway[J]. Drug Metab Dispos, 2016, 44(1):137-150. |
[49] |
CUI W, SUN M, GALEVA N, et al. SUMOylation and ubiquitylation circuitry controls pregnane X receptor biology in hepatocytes[J]. Drug Metab Dispos, 2015, 43(9):1316-1325. |
[50] |
LICHTI-KAISER K, BROBST D, XU C, et al. A systematic analysis of predicted phosphorylation sites within the human pregnane X receptor protein[J]. J Pharmacol Exp Ther, 2009, 331(1):65-76. |
[51] |
CUI W, SHEN X, AGBAS E, et al. Phosphorylation modulates the coregulatory protein exchange of the nuclear receptor pregnane X receptor[J]. J Pharmacol Exp Ther, 2020, 373(3):370-380. |
[52] |
SUGATANI J, HATTORI Y, NOGUCHI Y, et al. Threonine-290 regulates nuclear translocation of the human pregnane X receptor through its phosphorylation/dephosphorylation by Ca2+/calmodulin-dependent protein kinase Ⅱ and protein phosphatase[J]. Drug Metab Dispos, 2014, 42(10):1708-1718. |
[53] |
GOTOH S, NEGISHI M. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis[J]. Sci Rep, 2015, 5(1):14076. |
[54] |
HU H, YOKOBORI K, NEGISHI M. PXR phosphorylated at Ser350 transduces a glucose signal to repress the estrogen sulfotransferase gene in human liver cells and fasting signal in mouse livers[J]. Biochem Pharmacol, 2020, 180:114197. |
[基金项目] 兰州大学“双一流”引导专项-队伍建设经费-科研启动费(561119203)
[作者简介]
[收稿日期] 2020-10-24
引用格式
崔红梅
.
基于蛋白质相互作用网络的PXR调控研究进展[J].环境与职业医学,
2020, 37(12): 1224-1229.
doi:10.13213/j.cnki.jeom.2020.20490.
CUI Hong-mei . Research updates on PXR regulation based on protein-protein interaction.Journal of Environmental & Occupational Medicine, 2020, 37(12): 1224-1229. doi:10.13213/j.cnki.jeom.2020.20490.