《环境与职业医学》杂志官方网站 《环境与职业医学》杂志官方网站

2019, 36(5):470-473, 478.doi:10.13213/j.cnki.jeom.2019.18828

Detection of thyroid nodules in children from areas with different drinking water iodine and fluoride contents in Cangzhou, Hebei Province


1a. Department of Health Management and Services, Cangzhou Medical College, Cangzhou, Hebei 061001, China1b. Department of Basic Medicine, Cangzhou Medical College, Cangzhou, Hebei 061001, China1c. Department of Medicine, Cangzhou Medical College, Cangzhou, Hebei 061001, China2. Department of Nutrition and Food Hygiene, Cangzhou Center for Disease Prevention and Control, Cangzhou, Hebei 061001, China3. Department of School Health, Cangzhou Health Supervision Bureau, Cangzhou, Hebei 061001, China

Accepted: 2018-12-12;  Published: 2019-06-10

Fund project: This study was funded

Corresponding Author: LIU Ming-qing, Email: liumq988@163.com  

Ethics approval  Obtained
Competng interests  None declared

[Background] The detection rate of thyroid nodules has reached 19%-68%. It has been recognized that excessive or lack of iodine in drinking water can cause damage to thyroid morphology and function. However, the combined effects of fluoride and iodine in drinking water on thyroid morphology and function are inconsistent in the studies from different regions.

[Objective] This study intends to investigate the detection of thyroid nodules in children with different iodine and fluoride contents in drinking water from Cangzhou, Hebei Province, and to provide preliminary data to explore whether iodine and fluoride contents are associated with the detection of thyroid nodules in children.

[Methods] By the method of multistage stratified cluster sampling, in excess iodine area, deficient iodine area, normal iodine area, excess iodine-fluoride area (the area was further divided into three subgroups), and deficient iodine and excess fluoride area in Cangzhou, the study examined thyroid nodules of local children aged 8-15 years in primary or secondary schools from 1-2 administrative villages by color Doppler ultrasonography.

[Results] A total of 1 859 children were investigated, of which 933 were girls and 926 were boys. There were 248 children in the excess iodine area, 216 in the deficient iodine area, 316 in the normal iodine area, 737 in the excess iodine-fluoride area, and 342 in the deficient iodine and excess fluoride area. There were 869 children aged 8-10 years, and 990 children aged 11-15 years. In the selected areas, the proportion of non-iodized salt consumption in the children's households ranged from 77.9% to 97.6%. Comparison among the excess iodine area, the deficient iodine area, and the normal iodine area showed that there was no significant difference in the detection rate of thyroid nodules of the children aged 8-10 and 11-15 years (χ2=4.270, P=0.118; χ2=5.506, P=0.064), and there was no significant difference in the detection rate of thyroid nodules between the two age groups in the same area (χ2=0.299, P=0.584; χ2=0.000, P=1.000; χ2=0.240, P=0.878). Comparison among the three subgroups in excess iodine-fluoride area showed that there were significant differences in the detection rate of thyroid nodules of children aged 8-10 and 11-15 years (χ2=37.933, P < 0.000 1; χ2=27.385, P < 0.000 1), and the highest detection rates of thyroid nodules in the two age groups were both in the subgroup 1 (23.08%, 29.82%). Comparison between the deficient iodine and excess fluoride area and the deficient iodine area showed that the detection rates of childhood thyroid nodules at the age of 8-10 years were not significantly different (χ2=1.907, P=0.167), but in the group at the age of 11-15 years, the detection rate of childhood thyroid nodules in the former area was significantly higher (7.44%) than the latter (1.75%) (χ2=4.721, P=0.030), and there was no significant difference in the detection rate of thyroid nodules between the two age groups in the same area (χ2=0.235, P=0.627; χ2=1.390, P=0.238).

[Conclusion] In the normal fluoride area with different contents of iodine in water, there is no difference in the detection rate of thyroid nodules among children aged 8-15 years in Cangzhou of Hebei Province. In the excess fluoride-iodine area, the detection rate of thyroid nodules among children aged 8-15 years varies with the content of iodine in water. Compared with the deficient iodine area, the detection rate of thyroid nodules among children aged 11-15 years is higher than that in the deficient iodine and excess fluoride area.

Key Words: drinking water;  iodine;  fluoride;  thyroid nodules;  children 

表 1

河北省沧州市不同水碘和氟含量地区儿童调查人数(构成)及饮水中碘、氟平均浓度

Table 1
表 2

河北省沧州市饮水中不同碘含量(氟含量正常)地区8~15岁儿童甲状腺结节检出情况

Table 2
表 3

河北省沧州市饮水中高碘高氟地区8~15岁儿童甲状腺结节检出情况

Table 3
表 4

河北省沧州市饮水中低碘地区儿童甲状腺结节检出情况

Table 4

Reference

[1]

陈凌志, 朱坤兵, 班博, 等.甲状腺疾病手术患者甲状腺疾病谱的回顾性分析[J].中华临床医师杂志, 2017, 11(1):77-82.

[2]

WARTOFSKY L. Management of papillary microcarcinoma:primum non nocere?[J]. J Pediatr Endocrinol Metab, 2012, 97(4):1169-1172.

[3]

BANN D V, GOYAL N, CAMACHO F, et al. Increasing incidence of thyroid cancer in the commonwealth of Pennsylvania[J]. JAMA Otolaryngol Head Neck Surg, 2014, 140(12):1149-1156.

[4]

HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer:the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1):1-133.

[5]

刘洋, 陈玕, 侯国强, 等.饮水中高碘高氟对8~10岁儿童甲状腺肿与氟斑牙流行影响研究[J].当代医学, 2013, 19(1):1-3.

[6]

巴月, 任丽君, 银功举, 等.饮水氟碘浓度对儿童氟斑牙及甲状腺功能影响[J].中国公共卫生, 2009, 25(8):942-943.

[7]

国秀娟, 单忠艳, 滕卫平.氟过量与碘氟过量对甲状腺功能和形态影响的实验研究[J].中华内科杂志, 2006, 45(10):846-847.

[8]

李立明.流行病学[M].北京:人民卫生出版社, 2018:449-450.

[9]

郑灿杰, 占炳东, 邓小雁, 等.衢州市8~10岁儿童碘营养状况[J].中国学校卫生, 2017, 38(10):1465-1467.

[10]

王玲, 石敏, 刘松.徐州市泉山区学龄儿童甲状腺B超异常与碘营养关系[J].江苏预防医学, 2018, 29(5):581-582.

[11]

赵明, 温松臣, 吕胜敏, 等.不同碘营养水平儿童甲状腺结节检出情况及结节类型的研究[J].中国地方病防治杂志, 2017, 32(7):726-728.

[12]

李顺利, 温松臣, 赵明, 等.河北省沧州市不同水碘地区8~10岁儿童甲状腺结节检出情况分析[J].中华地方病学杂志, 2018, 37(2):136-139.

[13]

李红, 才琪, 王丹.氟对大鼠甲状腺形态和甲状腺过氧化物酶活性及蛋白表达的影响[J].中国地方病学杂志, 2012, 31(3):271-274.

[14]

常青, 李自成.高氟与低碘对亲代及子代小鼠甲状腺的协同作用[J].环境与健康杂志, 2002, 19(4):303-305.

[15]

MALIN AJ, RIDDELL J, MCCAGUE H, et al. Fluoride exposure and thyroid function among adults living in Canada:Effect modification by iodine status[J]. Environ Int, 2018. 121(1):667-674.

Metrics
  • PDF downloads (0)
  • Article visits (37)
  • XML Downloads (0)
  • Cited by (0)

Catalog

我国各级医疗机构对儿童用基本药物剂型和规格的需求调查

甲状腺结节是指甲状腺细胞在局部异常生长所引起的散在病变,多在体格检查中偶然发现。近年研究提示,国内外甲状腺疾病检出率均呈上升趋势[1-3]。随着高分辨率彩超广泛应用于甲状腺疾病的检查,提高了该病的检出率,使甲状腺结节的检出率达19%~68%,其中7%~15%为甲状腺癌[4]。长期以来有关甲状腺疾病影响因素方面的研究很多,现已公认饮水碘含量过高或缺乏均可造成甲状腺形态和功能的损害。但饮水中氟与碘双重因素对甲状腺形态和功能的影响,各地的研究结果不一致[5-7]。本研究拟通过调查饮水中不同碘、氟含量地区儿童甲状腺结节检出情况,为进一步探讨饮水碘、氟单一因素及双重因素对儿童甲状腺疾病的影响提供基础数据。

1   对象与方法

1.1   调查对象

依据GB 16005—2009 《碘缺乏病病区划分》、GB/T 19380—2016 《水源性高碘地区和高碘病区的划定》和GB 17017—2010 《地方性氟中毒病区控制标准》,可将河北省沧州市划分为单纯高碘(水碘≥ 100 µg/L,水氟0.5~<1 mg/L)、单纯低碘(水碘≤ 10 µg/L,水氟0.5~<1mg/L)、单纯正常碘(水碘>10~<100µg/L,水氟0.5~<1mg/L)、高碘高氟(水碘≥100 µg/L,水氟≥1 mg/L,根据检测地不同又可分为3个亚组)、低碘高氟地区(水碘≤ 10µg/L,水氟≥1mg/L)共五类八个地区。

2016年11月—2017年1月在上述每个地区,采用多级分层整群抽样的方法,在各地区选择以同一水源水为饮用水的1~2个行政村,以村内中小学校的学生为对象开展调查。依据GB/T 19380—2016 《水源性高碘地区和高碘病区的划定》标准,按比例抽取100例以上,在当地出生并持续居住在沧州本地的8~15岁儿童作为调查对象。排除最近一个月感冒或有严重疾病或不完全饮用本地水源者。本研究已经沧州医学高等专科学校伦理审查委员会的评估和审批,获学生家长知情同意后预约后续调查。

1.2   甲状腺结节的检查及诊断

甲状腺检查由经过培训的专业超声医生完成,所用彩超的型号为Z5(中国迈瑞),探头型号75L38EA,探头频率为7.5 MHZ。检查方法:学生平仰卧位,头颈后仰,在甲状腺部位均匀涂抹耦合剂,用探头按左右顺序上下横扫甲状腺,观察并记录甲状腺的情况。依据甲状腺彩超诊断结果和《中国甲状腺结节和分化型甲状腺癌指南》(2012)作出甲状腺结节患病诊断。

1.3   水样采集及检测

各调查地区均为集中供水。依据GB/T 19380— 2016 《水源性高碘地区和高碘病区的划定》,在每个被调查的行政村分别采集2个末梢水水样,依据GB/T 5750.5—2006 《生活饮用水标准检验方法无机非金属指标》,采用砷铈催化分光光度测定法测定饮水碘含量,氟离子选择电极法测定饮水氟含量。

1.4   食盐采集及检测

为每名参与调查学生分发贴有标签的包装袋,收集学生家的食盐50 g,密封保存。依据GB/T 13025.7— 2012 《制盐工业通用试验方法碘的测定》,采用直接滴定法检测食盐碘含量。

1.5   统计分析方法

采用EpiData 3.0软件录入数据,统计分析应用SPSS 22.0软件。每个被调查的行政村饮水中碘、氟含量分别用均数表示;计数资料分析采用χ2检验,两两比较时检验水准采用Bonferroni法校正。检验水准α=0.05(α’=0.016 7)。

2   结果

2.1   一般情况

调查的儿童人数及构成情况、饮水碘及氟含量、儿童碘盐食用情况见表 1。共调查8~15岁学龄儿童1 859人,其中女生933人,男生926人。单纯高碘地区248人、低碘地区214人、碘正常地区310人、高碘高氟地区737人、低碘高氟地区340人。8~10岁儿童869人,11~15岁990人。沧州不同饮水碘、氟含量地区,儿童家中无碘盐率为77.9%~97.6%。

表1

河北省沧州市不同水碘和氟含量地区儿童调查人数(构成)及饮水中碘、氟平均浓度

2.2   儿童甲状腺结节检出情况

2.2.1   氟含量正常地区

在单纯高碘、低碘及碘正常地区,不同年龄儿童甲状腺结节检出结果显示:8~15岁儿童甲状腺结节检出率在三个地区之间无差异(均P > 0.05)。同一地区8~10岁与11~15岁年龄组儿童甲状腺结节检出率之间比较,亦无差异(均P > 0.05)。见表 2

表2

河北省沧州市饮水中不同碘含量(氟含量正常)地区8~15岁儿童甲状腺结节检出情况

2.2.2   高碘高氟地区

8~10岁及11~15岁年龄组儿童甲状腺结节检出率,在不同高碘高氟地区之间存在差异(均P < 0.05)(表 3);且高碘高氟1地区高于其他地区(均P < 0.016 7)。在高碘高氟2和高碘高氟3两个地区,11~15岁年龄组儿童甲状腺结节检出率均高于8~10岁组(均P < 0.016 7),其他地区差异没有统计学意义,见表 3

表3

河北省沧州市饮水中高碘高氟地区8~15岁儿童甲状腺结节检出情况

2.2.3   低碘地区

与单纯低碘地区比较,8~10岁低碘高氟地区儿童甲状腺结节检出率没有明显差异(P > 0.05),但11~15岁儿童甲状腺结节检出率明显升高(P < 0.05)。同一地区,两年龄组儿童甲状腺结节检出率之间差异均无统计学意义(均P > 0.05),见表 4

表4

河北省沧州市饮水中低碘地区儿童甲状腺结节检出情况

3   讨论

环境中碘过多和碘缺乏是引起甲状腺疾病的主要原因,通常选择当地8~10岁儿童作为观察对象,监测甲状腺疾病的检出情况及评价防病措施效果。11~15岁儿童正处在青春发育期,碘的需要量会明显增加,此年龄阶段是碘缺乏病的高发期,低碘地区11~15岁年龄组儿童甲状腺肿大率高于8~10岁年龄组[8]。本次调查结果显示,在单纯高碘、正常碘、低碘和低碘高氟等地区,8~10岁与11~15岁年龄组儿童甲状腺结节检出率之间无差异。国内对衢州市和徐州市儿童的研究也发现,不同年龄学生甲状腺肿大和结节检出率无差异[9-10]

近年来居民甲状腺结节检出率不断升高[1-4],儿童甲状腺结节也备受关注[9-12]。赵明[11]等报道,沧州不同饮水碘含量地区8~10岁儿童甲状腺结节患病率为3.4%~8.4%,高碘可能与儿童甲状腺结节发生有关。本次调查显示:在单纯高碘、低碘及碘正常地区,8~10岁及11~15岁年龄组儿童甲状腺结节检出率分别为0.98%~4.72%、1.75%~6.34%,但不同碘含量地区儿童甲状腺结节检出率差异无统计学意义。

沧州地区存在水源性高碘地区、水源性低碘地区及水源性高氟地区,氟过量可能会影响碘的吸收和利用,有动物实验研究发现过量的氟也可能对甲状腺造成损害[7, 13-14]。本调查发现,高碘高氟1地区(水碘119.31 μg/L,水氟4.67 mg/L)8~10岁及11~15岁儿童甲状腺结节检出率(23.08%,29.82%)最高。8~10岁儿童甲状腺结节检出率低碘高氟地区(4.0%)与单纯低碘地区(0.98%)差异无统计学意义;11~15岁儿童甲状腺结节检出率低碘高氟地区(7.44%)明显高于单纯低碘地区(1.75%)。Malin等[15]在加拿大的一项研究显示,高氟会加重对缺碘状态的成人甲状腺功能的危害。饮水氟对甲状腺结节发生的影响有待进一步探讨。

由于本研究采用横断面研究,且可能影响儿童甲状腺结节检出率的混杂因素控制不够全面,本研究尚无法探究因果关系,亦不能很好地诠释碘和氟的交互作用,今后我们将进一步扩大范围、优化监测指标,以更深入地开展饮水碘、氟双因素对甲状腺结节影响的研究。

《环境与职业医学》杂志官方网站

Export file

Format

Content