成丽霞, 班红芳, 吕懿, 王丹, 曹彬, 穆箭兵, 郑金平. 苯并[a]芘对人神经母细胞瘤细胞能量代谢的影响[J]. 环境与职业医学, 2018, 35(4): 323-329. DOI: 10.13213/j.cnki.jeom.2018.17607
引用本文: 成丽霞, 班红芳, 吕懿, 王丹, 曹彬, 穆箭兵, 郑金平. 苯并[a]芘对人神经母细胞瘤细胞能量代谢的影响[J]. 环境与职业医学, 2018, 35(4): 323-329. DOI: 10.13213/j.cnki.jeom.2018.17607
CHENG Li-xia, BAN Hong-fang, LÜ Yi, WANG Dan, CAO Bin, MU Jian-bing, ZHENG Jin-ping. Effects of benzo[a]pyrene on energy metabolism in human neuroblastoma cells[J]. Journal of Environmental and Occupational Medicine, 2018, 35(4): 323-329. DOI: 10.13213/j.cnki.jeom.2018.17607
Citation: CHENG Li-xia, BAN Hong-fang, LÜ Yi, WANG Dan, CAO Bin, MU Jian-bing, ZHENG Jin-ping. Effects of benzo[a]pyrene on energy metabolism in human neuroblastoma cells[J]. Journal of Environmental and Occupational Medicine, 2018, 35(4): 323-329. DOI: 10.13213/j.cnki.jeom.2018.17607

苯并a芘对人神经母细胞瘤细胞能量代谢的影响

Effects of benzoapyrene on energy metabolism in human neuroblastoma cells

  • 摘要: 目的 研究苯并a芘(BaP)对人神经母细胞瘤SH-SY5Y细胞能量代谢的影响,进一步探讨BaP的神经毒性。

    方法 不同浓度BaP染毒SH-SY5Y细胞24 h,采用MTT法检测细胞活力;细胞丙二醛(MDA)测定试剂盒测定细胞内MDA含量;超氧化物歧化酶(SOD)分型测试盒测定细胞内锰(Mn)-SOD含量;Seahorse XFp细胞能量分析仪检测细胞耗氧率(OCR)及胞外酸化率(ECAR)。

    结果 随着BaP染毒浓度的增大,细胞活力明显下降(P趋势 < 0.01);随着BaP染毒浓度的增大,细胞内MDA水平升高(P趋势 < 0.01),Mn-SOD水平降低(P趋势 < 0.01),1.0、10.0、100.0 μmol/L BaP组细胞内MDA含量明显高于对照组,Mn-SOD含量明显低于对照组(P < 0.05);随着BaP染毒浓度的增大,细胞的基础有氧呼吸、ATP偶联有氧呼吸速率、有氧呼吸最大值、糖酵解水平、糖酵解最大值及糖酵解储备值均呈下降趋势(P趋势 < 0.01),各浓度组基础有氧呼吸、ATP偶联有氧呼吸速率明显低于对照组(P < 0.05);10.0、100.0 μmol/L BaP组有氧呼吸最大值、有氧呼吸储备值、糖酵解水平、糖酵解最大值及糖酵解储备值明显低于对照组(P < 0.05)。不同浓度BaP处理组MTT光密度值及Mn-SOD含量与基础有氧呼吸、ATP偶联有氧呼吸速率、有氧呼吸最大值、有氧呼吸储备值、糖酵解水平、糖酵解最大值及糖酵解储备值均呈正相关(P < 0.05),细胞内MDA含量与各细胞生物能量参数均呈负相关(P < 0.05)。

    结论 BaP造成SH-SY5Y细胞氧化损伤,降低线粒体呼吸功能,较高浓度时损伤有氧呼吸储备能力及糖酵解功能。

     

    Abstract: Objective To study the effect of benzoapyrene (BaP) on energy metabolism of human neuroblastoma SH-SY5Y cells, and further explore the potential neurotoxicity of BaP.

    Methods SH-SY5Y cells were exposed to different concentrations of BaP for 24 h. Cell viability was determined by MTT assay. Malondialdehyde (MDA) content was measured by MDA assay kit, manganese (Mn)-superoxide dismutase (SOD) content by SOD typing test kit, and cell oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) by Seahorse XFp cell energy analyzer.

    Results As the concentration of BaP increased, the cell viability decreased (Ptrend < 0.01), the intracellular MDA level increased (Ptrend < 0.01), and the Mn-SOD level decreased (Ptrend < 0.01). The cells treated with 1.0, 10.0, and 100.0 μmol/L BaP showed significantly higher MDA levels and significantly lower Mn-SOD levels than the control cells (P < 0.05). As the concentration of BaP increased, the basal OCR, ATP-linked OCR, maximal respiration, glycolysis, glycolytic capacity, and glycolytic reserve displayed a downward trend (Ptrend < 0.01), the basal OCR and ATP-linked OCR of the exposed groups were significantly lower than those of the control group (P < 0.05), and the maximal respiration, spare respiratory capacity, glycolysis, glycolytic capacity, and glycolytic reserve of the 10.0 and 100.0 μmol/L BaP groups were significantly lower than those of the control group (P < 0.05). Optical density of MTT and Mn-SOD level of the BaP exposed groups were positively correlated with basal OCR, ATP-linked OCR, maximal respiration, spare respiratory capacity, glycolysis, glycolytic capacity, and glycolytic reserve (P < 0.05). Intracellular MDA level was negatively correlated with various cellular bioenergy indicators (P < 0.05).

    Conclusion BaP can cause oxidative damage in SH-SY5Y cells, reduce mitochondrial respiratory function, and impair the spare respiratory capacity and glycolytic function of SH-SY5Y cells at higher concentrations.

     

/

返回文章
返回