张婉莉, 单文琪, 陈超, 董昊炜, 袁浩, 周秋明, 陶峰, 彭恒, 马雅军. 氯菊酯对人小胶质细胞HMC3的毒性效应及潜在机制[J]. 环境与职业医学, 2024, 41(3): 267-275. DOI: 10.11836/JEOM23269
引用本文: 张婉莉, 单文琪, 陈超, 董昊炜, 袁浩, 周秋明, 陶峰, 彭恒, 马雅军. 氯菊酯对人小胶质细胞HMC3的毒性效应及潜在机制[J]. 环境与职业医学, 2024, 41(3): 267-275. DOI: 10.11836/JEOM23269
ZHANG Wanli, SHAN Wenqi, CHEN Chao, DONG Haowei, YUAN Hao, ZHOU Qiuming, TAO Feng, PENG Heng, MA Yajun. Toxic effects of permethrin on HMC3 microglia and its associated mechanism[J]. Journal of Environmental and Occupational Medicine, 2024, 41(3): 267-275. DOI: 10.11836/JEOM23269
Citation: ZHANG Wanli, SHAN Wenqi, CHEN Chao, DONG Haowei, YUAN Hao, ZHOU Qiuming, TAO Feng, PENG Heng, MA Yajun. Toxic effects of permethrin on HMC3 microglia and its associated mechanism[J]. Journal of Environmental and Occupational Medicine, 2024, 41(3): 267-275. DOI: 10.11836/JEOM23269

氯菊酯对人小胶质细胞HMC3的毒性效应及潜在机制

Toxic effects of permethrin on HMC3 microglia and its associated mechanism

  • 摘要: 背景

    氯菊酯是一种常用的拟除虫菊酯类杀虫剂,研究发现其具有潜在神经系统毒性。小胶质细胞是中枢神经系统中的天然免疫细胞,参与一系列神经退行性疾病的发生。

    目的

    本研究观察氯菊酯在体外对人小胶质细胞HMC3的毒性效应,并探讨其机制。

    方法

    使用0、10、25、55 μmol·L−1的氯菊酯染毒HMC3 72 h后,使用流式细胞仪检测细胞周期和细胞凋亡,实时荧光定量PCR(qPCR)检测细胞周期蛋白依赖性激酶1基因(CDK1)、细胞周期蛋白依赖性激酶抑制因子1A基因(CDKN1A)、细胞周期蛋白B2基因(CCNB2)、肿瘤蛋白p53基因(p53)、凋亡相关因子基因(FAS)、胱天蛋白酶3基因(CASP3)和H2A变体组蛋白基因(H2AX)的表达。转录组测序(RNA-seq)检测0、25 μmol·L−1氯菊酯染毒后HMC3的差异基因和富集通路。再次使用0、10、25、55 μmol·L−1的氯菊酯染毒HMC3 72 h后,使用格里斯试剂法检测上清中一氧化氮(NO)含量,酶联免疫吸附法检测白细胞介素(IL)-6的分泌水平,qPCR检测丝裂原活化蛋白激酶(MAPK)通路(包括MAPK1MAPK8MAPK14)、IL-1βIL-6和基质金属蛋白酶(MMP)家族(包括MMP1MMP2MMP3MMP9)的mRNA表达情况,蛋白质印记法(Western blot)检测磷酸化p38(p-p38)、磷酸化细胞外信号调节激酶(p-ERK)、IL-1β、IL-6和MMP1蛋白表达情况。

    结果

    0、10、25、55 μmol·L−1氯菊酯染毒细胞后,HMC3在G2/M期阻滞,其中55 μmol·L−1氯菊酯染毒组与对照组差异有统计学意义(P<0.01),qPCR结果显示CDKN1A mRNA表达较对照组上调(P<0.05)。各组细胞凋亡比例差异无统计学意义(P>0.05)。RNA-seq结果提示差异基因富集于MAPK通路。qPCR结果提示55 μmol·L−1染毒组MAPK1MAPK8MAPK14的mRNA表达较对照组上调(P<0.05)。Western blot发现,与对照组相比,10 μmol·L−1氯菊酯染毒组的p-p38和p-ERK水平均升高(P<0.05),25 μmol·L−1氯菊酯染毒组的p-ERK水平升高(P<0.05),55 μmol·L−1氯菊酯染毒组的p-p38水平升高(P<0.05)。与对照组相比,染毒后的HMC3上清液中NO分泌量增加(P<0.05),IL-6的mRNA、蛋白表达和分泌量呈上升趋势,IL-1β的mRNA和蛋白表达上调(P<0.05),25、55 μmol·L−1组MMP1的mRNA和蛋白表达上调(P<0.05)。

    结论

    氯菊酯在体外抑制HMC3细胞增殖,诱导细胞周期阻滞,可激活MAPK通路,促进炎症因子IL-1β以及MMP1表达,可能是氯菊酯致人神经毒性的机制之一。

     

    Abstract: Background

    Permethrin is a commonly used pyrethroid insecticide and has been found to be potentially neurotoxic. Microglia are innate immune cells in the central nervous system and are involved in the development of a range of neurodegenerative diseases.

    Objective

    To observe possible toxic effects of permethrin on human microglia clone 3 (HMC3) in vitro and explore associated mechanism.

    Methods

    HMC3 were treated with 0, 10, 25, and 55 μmol·L−1 permethrin for 72 h. Cell cycle and apoptosis were measured using flow cytometry. Cyclin-dependent kinase 1 (CDK1), cyclin-dependent kinase inhibitor 1A (CDKN1A), cyclin B2 (CCNB2), cellular tumor antigen p53 (p53), factor-related apoptosis (FAS), caspase 3 (CASP3), and H2A histone family member X (H2AX) were detected by quantitative real-time PCR (qPCR). The differential genes and enrichment pathways of HMC3 after 0 and 25 μmol·L−1 permethrin treatment was analyzed by RNA sequencing. HMC3 was treated by 0, 10, 25, and 55 μmol· L−1 permethrin for 72 h. The content of nitric oxide (NO) in the supernatant was detected using Griess reagent. The secretion level of interleukin-6 (IL-6) was detected by enzyme linked immunosorbent assay (ELISA). The mRNA expression levels of mitogen-activated protein kinase (MAPK) pathway (including MAPK1, MAPK8, and MAPK14), interleukin-1β (IL-1β), IL-6, and matrix metalloproteinase (MMP) families (including MMP1, MMP2, MMP3, and MMP9) were detected by qPCR. The protein expressions of phosphorylated p38 mitogen-activated protein kinase (p-p38), phosphorylated extracellular signal-regulated kinase (p-ERK), IL-1β, IL-6, and MMP1 were detected by Western blot.

    Results

    HMC3 was arrested in G2/M phase after 0, 10, 25, and 55 μmol·L−1 permethrin treatment for 72 h, of which there was a statistically significant difference between the 55 μmol·L−1 permethrin treatment group and the control group (P<0.01), and the mRNA expression of CDKN1A was up-regulated according to the qPCR (P<0.05). There was no statistically significant difference in the proportions of apoptosis between the groups (P>0.05). The RNA sequencing showed that the differential genes were enriched in the MAPK pathway, and the mRNA expressions of MAPK1, MAPK8, and MAPK14 were up-regulated after the permethrin treatment at 55 μmol·L−1 compared to the control group by qPCR (P<0.05). The Western blot revealed that, compared to the control group, the levels of p-p38 and p-ERK were increased after the 10 μmol·L−1 permetrin treatment (P<0.05), the p-ERK level was increased after the 25 μmol·L−1 permetrin treatment (P<0.05), and the p-p38 level was up-regulated after the 55 μmol·L−1 permetrin treatment (P<0.05). The secretion of NO in the supernatant of HMC3 increased after permetrin treatment compared to the control group (P<0.05), the mRNA and protein expressions and the secretion of IL-6 showed an upward trend, the mRNA and protein expressions of IL-1β were up-regulated (P<0.05), and the mRNA and protein expressions of MMP1 were up-regulated in the 25 and 55 μmol·L−1 permethrin groups (P<0.05).

    Conclusion

    Permethrin inhibits HMC3 cell proliferation in vitro, induces cell cycle arrest, activates MAPK pathway, and promotes the expression of inflammatory factors IL-1β and MMP1, which may be one of the mechanism of neurotoxicity induced by permethrin.

     

/

返回文章
返回